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An approximate method to compute the maximum deformation and 
permanent set of a beam subjected to a shock wave loading in vacuo 
and in water was investigated. The method equates the maximum 
kinetic energy of the beam (and water) to the elastic plastic work 
done by a static uniform load applied to the beam. 
in water case indicate that the plastic deformation is controlled by 
the kinetic energy of the water. The simplified approach can result 
in significant savings in computer time or it can expediently be used 
as a check of results from a more rigorous approach i.e., a finite 
element solution. 
various examples of beams with simple support and clamped support 
boundary conditions. 

Results for the 

The accuracy of the method is demonstrated by 

INTRODUCTION 

Computer codes exist today to calculate the elastic-plastic deformation of 
structures subject to shock wave loading, such as the finite element codes 
ANSYS reference [l], and STAGS reference [ Z ] .  Although these and other codes 
offer the analyst a large variety of elements and several plasticity theories, 
the computational effort to calculate the dynamic plastic deformation of a 
large structure may be substantial. To reduce the computational effort, an 
approximate method based upon energy considerations was investigated. 
Calculated quantities of interest are maximum deformation and permanent set. 
The method equates the maximum kinetic energy to the elastic-plastic work done 
by a static uniform load applied to the structure. 
calculated from a relatively simple time dependent elastic analysis of the 
structure and the work is calculated from another relatively simple elastic 
plastic static analysis. 
part of the analyst can be realized by the simplified method. 
very similar to approximate energy methods developed over a decade ago for 
structures in air subjected to impulsive type loadings, references [ 3 ] ,  [ 4 ]  and 
[5]. The primary differences are, (1) the structure (beam) is in water, and 
(2)  the implementation of the method and validation is carried out with the use 
of a modern finite element code. 

The kinetic energy is 

Essential savings in computer time and effort on the 
The method is 



To demonstrate the accuracy of the method, several examples are given. 
They consist of beams of various lengths and boundary conditions subject to 
shock wave loadings at normal incidence in vacuo and in water. The shock 
loading is from an exponentially decaying step wave, with decay time much 
smaller than the period of vibration. 
tends to apply an impulse to (at least) the fundamental mode of the structure, 
with the maximum kinetic energy occurring primarily in the fundamental mode at 
very early time and after the shock wave pressure has nearly diminished to 
zero. These are very important considerations in the energy balance method 
used herein because the method does not account for the additional external 
work performed by the shock wave pressure after the peak kinetic energy occurs 
in the structure. Furthermore, the uniform pressure used in the 
elastic-plastic static analysis exactly simulates the applied load distribution 
and approximates the inertia load distribution corresponding to the fundamental 
mode of the beam. For the case of the beam in water, the fluid reaction force 
applied back onto the beam is mathematically represented by the doubly 
asymptotic approximation, DAA reference [ 6 ] .  This approximation is easily 
introduced into the dynamic elasticLplastic finite element model. 

Under these conditions, the loading 

DESCRIPTION OF ANALYTICAL MODELS 

Three analytical models were used in this investigation. They were, (1) an 
ANSYS dynamic elastic plastic finite element model to calculate the beam's 
deflection and kinetic energy (and water's kinetic energy) due to a shock wave, 
(2) an ANSYS static elastic plastic finite element model to calculate the 
beam's deflection and external work performed by a uniform pressure, and ( 3 )  a 
simplified two degree of freedom model to calculate the elastic plastic 
response of the beam's fundamental mode to the shock wave. 

Fig. 1 shows the dynamic finite element model for the simple support 
condition. Fixed ends were also considered. The model consisted of eight 
equal length beam elements with dampers attached and mass elements attached to 
the opposite end of the dampers. 
fluid-structure interaction effects. The dampers represent the radiation term 
of the DAA and the masses represent the virtual mass term of the DAA. 
case of the beam's response in vacuo, the damping coefficient and water mass 
were zero. 
pressure of the shock w a v e .  

The dampers and masses were used to model 

In the 

The applied loading consisted of the time dependent blocked 

I l l  

Figure 1. Finite Element Model 
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The elastic-plastic static finite element model consisted of eight elements 
also. 
The external work performed by the pressure was calculated with the use of this 
model by simply integrating the pressure-displacement response. 

This beam model was subjected to a statically applied pressure loading. 

The simplified spring-mass-damper model is shown in Fig. 2. The spring 
characteristic is obtained from the elastic-plastic force deflection response 
of the static model, and the mass, damping, and force terms are obtained by 
applying Lagrange's equation of motion to the fundamental mode of the beam. 
This model can be used to calculate the maximum displacement of the beam and 
the permanent deformation. It will be shown to give very good comparisons with 
the ANSYS finite element model, thereby demonstrating the dominant contribution 
of the funadmental mode to the elastic-plastic response. 

/ 
Figure  2. Two DOF Model 

RESULTS 

Several examples were used to investigate the energy balance method. Beams 
of 5 0 ,  75 and 100 inches long were considered, with simple support and clamped 
boundary conditions. 
respectively. 
arbitrary. The material was steel with a yield stress of 80000 psi with very 
little work-hardening. The shock loading pressure on the beam was 
mathematically expressed as p - po et/' where Po is the blocked 
pressure. A decay constant of o - .001 seconds was used which for most of the 
beams was small compared to the fundamental period of vibration. A blocked 
peak pressure of 2500 psi was used for the water case and for the air case, it 
was 667 psi. 
significant plastic deformation. 
in this investigation. 

The width and thickness were 6 inches and 2 inches, 
It is to be noted that the width dimension is completely 

These pressures were chosen for the purpose of producing 
Cavitation of the water was not accounted for 
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Fig. 3 illustrates the non-linear force displacement for the simply 
supported 100 inch long beam, and Fig. 4 illustrates the static work functions 
for the 100, 75 and 50 inch beams. 
support conditions. 
energy balance method is obtained by entering into Fig. 4 the peak kinetic 
energy of the beam (and water) induced by the dynamic load. 
energy calculation for this study occurred during the very early time (elastic) 
response. The permanent deflection is obtained by subtracting from the maximum 
deflection a recoverable deflection the beam would experience under removal of 
a static uniform load 

Similar curves are obtained for clamped 
The beam's dynamic maximum deflection predicted by the 

The peak kinetic 
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Figure 3 .  Force-Deflection for S.S. Beam 
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Fig. 5 illustrates the actual time dependent in water displacement response 
at the center of the 100, 75 and 50 inch clamped supported beams. The 
permanent set was obtained by drawing a mean line through the later time 
decayed response. 
in Fig. 6 for the 100 inch clamped supported beam. This figure also 

The peak kinetic energy occurs at very early time as shown 
~~ 

demonstrates that most of the kinetic energy resides in the-water 
primarily converted to plastic work in the beam). 
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Figure 5. Displacement of C.S. Beam 
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Figure 6 .  Kinetic Energy of C.S. 100 in. Beam 
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Table 1 compares the peak deflections and permanent deflections obtained 
from the ANSYS dynamic response model and the energy balance method, and Table 
2 lists the fundamental period of vibration of the six beams. As seen, the 
comparisons are better for the longer beams. The reason is believed to be the 
longer period of vibration of the longer beams. As the period approaches, the 
decay time (.001 seconds), the kinetic energy of the beam reaches a maximum 
before the shock wave diminishes to zero. Thus there is additional dynamic 
work performed by the shock wave which is not accounted for in the energy 
balance method. Another consideration is the influence of higher frequency 
modes. If they are excited to any appreciable extent, the static work function 
would therefore not be a good approximation of the strain energy in the 
dynamically deformed beam. 
responding primarily in their fundamental mode since the work function is based 
on a uniform pressure applied to the beam. A final consideration is the use of 
a uniform pressure in the generation of the static work function. A better 
approximation would have been a distribution corresponding to the fundamental 
mode of the beam, since it is the kinetic energy associatd with this 
distribution that is converted to plastic work in the beam. 

The static work function is only valid for beams 

Fig. 7 compares results of the spring-mass-damper two degree of freedom 
(DOF) model with the ANSYS finite element model for the clamped supported 50 
inch beam in water. As shown, the comparison is reasonably good. Since this 
simple model is based on the fundamental mode of the beam, it may be concluded 
that higher order modes do not contribute significantly to the dynamic elastic 
plastic peak response. 
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Figure 7. Displacement of 50 in. C.S. Beam 
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Table 1 Comparison of ANSYS and Simplifed Model 

PEAK DEFLECTION PERMANENT DEFLECTION 
ANSYS ENERGY-BALANCE ANSYS ENERGY-BALANCE 

(INCHES) (INCHES) 

100" Long Beam 5 . 9  5 . 9  
Water 

Simple Support 

100" 

75"  

50" 

1 0 . 7  10.3 

6.60 6 . 4  

3 . 5 8  2 . 9  

Fixed Support 

100" 4 . 5 2  4 . 2  

75"  2 . 8 7  2 . 4  

50" 1 . 2 8  .8  

1 . 8  2 . 0  

5 . 5  5 . 8  

4 . 0  4 . 7  

2 . 0  1 . 7  

1 . 5  2 . 3  

1 . 2  1 . 2 5  

.60 .29 

Table 2 Fundamental Periods of Vibration 

Boundary Length Period 
Condition ( inches) (seconds) 

Simple 
Support 

C 1 amp ed 
Support 

100 .054 
75 .030 
50 .013 

100 
7 5  
50 

. 0 2 4  

.014 

.006 
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Using t h e  two DOF models, F igs .  8 and 9 compare t h e  k i n e t i c  ene rg ie s  f o r  
t h e  simply suppor ted  long beam and clamped supported s h o r t  beam wi th  t h e  
e x t e r n a l  work of t h e  app l i ed  shock wave, t h e  l o s t  work due t o  a c o u s t i c  
r a d i a t i o n ,  and t h e  s t r a i n  energy o f  deformation.  For t h e  energy ba lance  method 
t o  be a c c u r a t e ,  t h e  peak k i n e t i c  energy should occur a f t e r  most o f  t h e  e x t e r n a l  
work has  been completed and be fo re  t h e r e  is  apprec iab le  s t r a i n  energy i n  t h e  
beam. 
clamped s h o r t  beam, and t h e r e f o r e  he lps  t o  i l l u s t r a t e  why t h e  energy balance 
method performed b e t t e r  f o r  t h e  longer  beam. 

This  occurs  i n  t h e  case  of t h e  long simply suppor t  beam b u t  no t  f o r  t he  

v 
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CONCLUSION AND RECOMMENDATIONS 

The energy balance method has been shown to give reasonably accurate 
results for the prediction of peak deformation and plastic set in a beam in 
vacuo and in water subjected to a shock wave whose decay time is small compared 
to the fundamental period of vibration. Results for the in water case reveal 
that the plastic deformation is primarily controlled by the kinetic energy of 
the water. Improvements to the method could be realized by (1) accounting for 
the actual mode shape in the static work function, and (2) utilizing the 
improved second order doubly asymptotic approximation, reference [ 6 ] .  Further 
validation in predicting the actual in-fluid elastic-plastic response should be 
carried out by using fluid finite elements to model the fluid. Such a model 
could also investigate the importance of fluid cavitation. 
should also be given to using the energy balance method for other structures, 
such as plates and cylinders. 

Consideration 
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